Atmospheric researchers present new findingson the natural hydrogen cycle
Two months after a pivotal study on the potential impact of a future hydrogen economy on the environment, further evidence is emerging on what would happen to new quantities of hydrogen released into the atmosphere through human activity.
In an article appearing in the August 21 issue of the journal Nature, a group of researchers from the California Institute of Technology and other institutions reports results of a study of the atmospheric chemical reactions that produce and destroy molecular hydrogen in the stratosphere. Based on these results, the report concludes that most of the hydrogen eliminated from the atmosphere goes into the ground, and therefore that the scientific community will need to turn its focus toward soil destruction of hydrogen in order to accurately predict whether human emissions will accumulate in the air. The researchers reached this conclusion through careful measurement of the abundance of a rare isotope of hydrogen known as deuterium. It has long been known that atmospheric molecular hydrogen is anomalously rich in deuterium, but it was unclear why. The only reasonable explanation seemed to be that atmospheric hydrogen is mostly destroyed by chemical reactions in the air, and that those reactions are relatively slow for deuterium-rich hydrogen, so it accumulates like salt in an evaporating pan of water.
If correct, this would mean that oxidizing atmospheric trace gases control the natural hydrogen cycle and that soils are relatively unimportant. The Caltech group discovered that one of the main natural sources of atmospheric hydrogen--the breakdown of methane--is actually responsible for the atmosphere's enrichment in deuterium. This result implies that reactions with atmospheric oxidants are relatively unimportant to the hydrogen cycle, and that uptake by soils is really in the driver's seat.
This issue is important because of the potential for a future hydrogen economy to leak hydrogen into the air--a scenario explored in the earlier study published in Science. Such leaks of hydrogen seem likely at present, and if they occur must either be mitigated by some natural processes that destroy hydrogen, or else the leaked hydrogen will accumulate in the atmosphere. If the latter, this hydrogen would inevitably find its way into the stratosphere and participate in chemical reactions that damage the ozone layer. The key to predicting how this chain of events will unfold is knowing what natural processes destroy hydrogen, and to what extent they might counteract increases in human emissions.
Hydrogen is a highly reactive element, but the question of when and where it reacts, and under what circumstances, is difficult to know precisely. This question is simplified in the stratosphere, where it's easier to single out and understand specific reactions. According to John Eiler, an assistant professor of geochemistry at the California Institute of Technology and an author of both the new paper and the June paper in Science, the new data were gathered from air samples gathered in the stratosphere with one of the high-flying ER-2 planes operated by the NASA Dryden Flight Research Center in the Mojave Desert.
The ER-2, a reconfigured U-2 spy plane, is part of NASA's Airborne Research Program and is crucial to atmospheric chemists interested in directly collecting stratospheric samples for air-quality research. The air samples that were collected in the ER-2 in various locales show that there is an extreme enrichment of deuterium in stratospheric hydrogen.
"We wanted to look at hydrogen in the stratosphere because it's easy to study the production of hydrogen from methane separate from other influences," Eiler explains. "It may seem odd to go to the stratosphere to understand what's happening in the ground, but this was the best way to get a global perspective on the importance of soils to the hydrogen cycle."
With precise information on the deuterium content of hydrogen formed from methane, the researchers were able to calculate that the soil uptake of hydrogen is as high as 80 percent. It is suspected that this hydrogen is used by soil-living microbes to carry on their biological functions, although the details of this process are poorly understood and have been the subject of only a few previous studies.
It seems likely that the hydrogen taken up by soils is relatively free of environmental consequences, but the question still remains how much more hydrogen the soil can consume. If future use of hydrogen in transportation results in a significant amount of leakage, then soil uptake must increase dramatically or it will be inadequate to cleanse the released hydrogen from the atmosphere, Eiler says.
"An analogy would be the discovery that trees and other plants get rid of some of the carbon dioxide that cars emit, but by no means all of it," he says. "So the question as we look toward a future hydrogen economy is whether the microbes will be able to eat the hydrogen fast enough."
The research was funded in part by the National Science Foundation. Bruce Doddridge, program director in the NSF's division of atmospheric science, said, "This carefully conducted research investigating the natural chemistry of sources and sinks affecting the abundance of molecular hydrogen in the troposphere results in the most accurate information to date, and appears to account for the tropospheric deuterium excess previously observed.
"A more accurate molecular hydrogen budget may have important implications as global fuel technology shifts its focus from fossil fuels to other sources," Doddridge added.
The lead author of the paper is Thom Rahn, a former postdoctoral scholar of Eiler's who is now affiliated with Los Alamos National Laboratory. The other authors are Paul Wennberg, a professor of atmospheric chemistry and environmental engineering science at Caltech; Kristie A. Boering and Michael McCarthy, both of UC Berkeley; Stanley Tyler of UC Irvine; and Sue Schauffler of the National Center for Atmospheric Research in Boulder, Colorado.
In addition to the NSF, other supporters of the research were the Davidow Fund and General Motors Corp., the David and Lucile Packard Foundation, the NASA Upper Atmosphere Research Program, and the National Center for Atmospheric Research.